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Response of a twisted nematic liquid crystal to any applied potential 

by T. W. PREIST, K. R. WELFORDT and J. R. SAMBLES 
Department of Physics, University of Exeter, Stocker Road, Exeter, 

Devon EX4 4QL, England 

(Received 16 February 1988; accepted 9 August 1988) 

The response of a twisted nematic liquid crystal trapped between flat and 
parallel aligning layers is analysed. Using a recently developed form for the 
relevant integrals it has been possible to evaluate the twist and tilt of the director 
for any applied voltage for twists up to a maximum of 90". It is shown that the 
equations describing the cell simplify in the high voltage limit and allow an analytic 
solution. This leads to considerable improvement in the computational procedures 
and also enables the twist profile to be expressed in a particularly simple algebraic 
form. 

1. Introduction 
The theoretical analysis of the response of a twisted nematic liquid crystal to an 

applied voltage has been well documented in the literature. The early foundation work 
of Dafermos [l], and Leslie [2, 31, was exploited by Deuling [4, 51 in developing 
integral representations of the solution to the problem while Berreman [6] developed 
numerical codes based upon the solution to the Euler-Lagrange equations. The 
present work follows the former approach with a view to providing a mixture of 
analytic and numerical methods allowing a rapid computational solution to the 
problem. The analytic results presented here are particularly pertinent in the limit of 
high voltages where computational difficulties arise. While the approach is similar in 
spirit to that of Scheffer [7] his results were limited to very low voltages whereas this 
paper particularly addresses the problem of how to find a satisfactory solution in the 
high voltage limit. 

Welford and Sambles [8] have shown that, by restructuring the relevant integrals, 
the response of a parallel aligned nematic liquid crystal layer may be fully evaluated 
for all applied voltages. They produced a new procedure for extracting the relevant 
integrals on a computer as well as analytic expressions for the high voltage limit 
response of the liquid crystal. The purpose of the present article is to examine the 
twisted cell in a similar manner. Deuling [5] has already presented the necessary 
starting point for this work with appropriate integral expressions based on the 
minimization of the free energy of the system. This present study re-expresses the 
relevant integrals allowing them to be evaluated numerically at  all voltages and 
thereby obtaining full characterization of the tilt and twist profiles through the cell. 
Further, limiting analytic expressions are obtained for the high voltage response 
which provide very useful simple forms for the important parameters specifying the 
director configuration within the cell. 

t Present address: Royal Signals and Radar Research Establishment, Great Malvern, 
England. 
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104 T. W. Preist et al. 

In this latter context the work presented here is a natural extension of the results 
of Thurston [9] who deduced exact solutions for particular liquid crystal configura- 
tions. What this paper does is to produce, for all configurations, including arbitrary 
twist (up to a maximum of 7~/2), an exact solution in the limit of high voltage. This 
solution also proves to be a very good approximation at voltages as low as twice the 
scale voltage. 

2. The basic model 
Consider a homogeneously aligned nematic liquid crystal cell in which the car- 

tesian coordinate system is chosen such that the direction normal to the bounding 
plane surfaces is the z direction. Further suppose that with no applied voltage the 
director on one aligning plate is parallel to the x axis while on the other it is in a 
direction rotated by w, with respect to the x axis with the constraint that w, < n/2. 
Following Deuling's [ S ]  approach for the minimization of the free energy of this 
system we end up with two important equations. The first specifies the twist angle w(z) 
within the cell as an integral of the form 

where 4(z )  is the tilt of the director which is determined implicitly through 

Z 
d47 (2) 

with L being the thickness of the cell and z being the distance measured from one edge. 
In these equations k = (k33 - k l l  ) / k , ,  is a simple function of the relevant elasticities, 
f i  is an unknown constant of integration and g(4) is a complicated function which 
depends upon f i  and 4, (the maximum tilt angle which occurs at z = L/2) 

sin2& - sin2+ 

In the latter y = (E , ,  - E ~ ) / E ~  where ell and cl are the relevant dielectric constants and 

In the second important equation the maximum tilt angle 4, is determined by the 
'Y = (k33 - k22Yk22. 

applied voltage V across the cell through 

(4) vo 
where V, is a natural unit of voltage given by 

Noting that w(z) = w,/2 and 4 ( z )  = 4,,, when z = L/2 equation (1) gives 
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Twisted nematics at any voltage 105 

Thus, given the initial parameters w, and V for the cell, equations (4) and (5) need 
to be solved simultaneously for p and 4,. Since g ( 4 )  contains f l  this is best done 
iteratively: 

(i) set P = 0 in equation (4) and determine &(P = 0) (i.e. &,,); use this value 

(ii) next using Po as the starting value repeat the procedure and so on until the 

To avoid problems with singularities in the integrals the following substitutions (see 
Dafermos [I], Leslie [2 ,  31 and Deuling [4]) are made: 

s in4 = sin$,sin$, q = sin2&. 

in equation (5) to determine a first approximation Po for P; 

desired convergence is obtained. 

With these substitutions equation (5) becomes 

Wm = 28 s,”” { d $ ,  (6 )  
(1 + qksin2$)(1 + qysin2$)(1 + q y )  

(1 - qsin*~+h)~(l + qasidI))’h($) 

where 

I (1 + ysin24)(1 + ysin2@,) 
sin24, - sin2r$ 

(1  - a + qa (1 + sin*+) 
1 - ?sin2$ (7) 

and equation (4) becomes 

- -  v - 2(1 + qy) ’ i2  s,”’ { (1 + qksin’q) ] I i 2  d $ .  (8) 
v, x (1 + qysin2q)(1 - qsin2$)h($) 

These integrals also present a problem when integrating numerically if the applied 
voltage V is large; consequently it is expedient to consider in some detail the high 
voltage limit. 

3. The high voltage limit 
2 4 an enormous simplification is possible by recognizing that 

the numerical difficulties arise because the important region of integration occurs 
when $ = x / 2  due to the near singularity produced by the factor (1 - q sin2 I)) in the 
denominator. This means that in this limit it is vital to include the variation of the 
factor (1 - q sin2 $) but all other factors can be replaced by their value a t  $ = 742 
without introducing a significant error. 

Equations (6 )  and (8) have a structure that implies that as V + co and q + 1 then 
p tends to zero like (I  - q). Therefore, defining 

In the limit V/ 

P(l + k)”2 (1 + y )  
(1 - r ) ( l  + a) 

x =  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
3
7
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



106 T. W. Preist el al. 

and also putting 
can safely be ignored equations (6 )  and (8) reduce to 

= 1 and $ = 7112 in all factors where variations from these values 

and 

- 1 + x2 (1 - q )  - qsin2+ 
1 - ysin2$ 

- 

where 

‘1 q’ = 
1 + x2 (1 - q)‘  

In the following it will be important to note that 

1 + x2(1 - q)  - q 
I + xZ(1 - q)  I - q ’  = (1 + x2)(1 - q). 

C, contains no singularity and is readily evaluated numerically at all voltages. There 
is, of course, a similar correction term in equation (9) but it is of less importance since 
the integral in this equation depends upon (1 - q)-’ whereas in equation (10) the 
integral depends upon log(1 - q). Consequently equations (9) and (10) become 

(1 1) d* 

and 

d$ + co). - v 2: 2(1 + k)1’* {I;’’ 
VO 7l (1 - q‘ sin2 

The expression in equation (12) is a standard elliptic integral of the first kind [lo] 
giving, as q’ + 1, 

v 2(1 + k)”2 
- N v, 71 

[-+In(l - q’) + In4 + C,,] 

{-tln((1 + x2)(1 - q)) + In4 + Co}. 
2(1 + k)l/* 

N - 
71 
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Twisted nematics at any voltage 107 

0.00 0.20 0.40 0'.60 0'.80 

The expression in equation (1 1) is also an elliptic integral-of the third kind- 
whose leading term [lo] in the limit q -+ 1 gives 

1.00 

That is 

or 

x = tan(?) 

so that 

Recalling that q = sin' +,,, then equation (1 3) gives 

21 - ' (' + k)"2 k n ( 1  + tanZ+,) - In 
v, 71 

0.60 

0.40 

0.20 

0.00 

(14) 

+ 2c0}. (15) 
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108 T. W. Preist et al. 

This expression is the analogous result for the twisted cell to that obtained by Welford 
and Sambles for the zero twist case. In the limiting situation of w, = 742, 
tan2(w,/2) = I ,  then 

V (1 + k)”2 I + tan2& 
- v, 1: n I n (  

) + 21n4 + 2C0} 

In general, for a given voltage V (  % V,) across the twisted cell, with a total twist angle 
of a,, it will have a maximum tilt angle given by 

where cjm0 is the maximum tilt angle for zero twist at the same voltage. 
Thus we have obtained analytic expressions for the important constants in. the 

integral for the limit of high voltages, that is, both j given by equation (14), and 4,,, 
given by equation (15). To establish that these expressions are valid we have computed 
both f i  and tan’ 4, for a range of w, values at  a voltage of 5 V,. The graph of x against 
tan(o,/2) is shown in figure 1 and confirms the expression (14), while figure 2 shows 
a graph of tan2 4,,, against ( 1  + tan20,/2) which also confirms equation ( 1  6 )  and 
hence equation ( 1  5). All these calculations have been performed using the nematic 

1 t500. 

Tan2@m 

13000 

11500 

10000 

8500 

7000 
1.00 1 .20 1 .$O 1 .SO 1 .80 

1 +tan~[wm/2] 
. 00 

Figure 2. Plot of iteratively calculated values of 4,,, for various values of w, at V/ & = 5.0. 
These calculated values are shown as crosses on a plot of tanZ& versus 
(1 + tan’(w,/2)). The analytic solution is again represented by the solid straight line. 
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Twisted nematics at any voltage 109 

Parameters for the liquid crystal mixture E7 (BDH Chemicals Ltd) modelled in the calculations 
presented in this paper. 

Parameter Symbol Value 

Parallel relative permittivity 
Perpendicular relative permittivity 
Splay elastic constant 
Twist elastic constant 
Bend elastic constant 
Layer thickness 
Wavelength of incident radiation 

20.25 
5.355 
1.111 x 10-"N 
1.713 x 10-"N 
1.8 x IO-I'N 

632.8 x 10-9m 
5 Pm 

mixture E7 as a model liquid crystal for which the relevant parameters used are listed 
in the table. 

4. The director profile in the high voltage limit 
In the limit of high voltage the tilt angle rises rapidly at  the edges of the cell to a 

value very close to 90" and is then effectively constant across the cell. The twist angle 
on the other hand varies rapidly in the centre of the cell rising from a value close to 
zero to one close to om. In both cases the rapidity of the change depends markedly 
upon the voltage V and since these features can readily be investigated in the high 
voltage limit it is instructive to do so. 

The differential forms of equations (1) and (2) are 

AB _ -  - d o  
dz (1 + asin24)cos24 

and 

with A = D,(~,,E~E~/~)--'~~, D= being the electric displacement produced by the 
applied voltage V. The voltage across the cell is 

V = joL Edz 

so that 

where 

(1 + y) dz 
5 = go I + ysin24 '  
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110 T. W. Preist et al. 

In the high voltage limit -+ 1 but as Vdecreases 5 progressively increases and in the 
limit V -+ V, ,  t -+ (1 + y). Details of this variation which are relevant to the shape 
of both the-twist and tilt profile are given in the Appendix. Writing 4 = 4,,, - 6 and 
assuming that 6 is small (for a region near the centre of the cell) 

cos 4 = cos $,,, cos 6 + sin b,,, sin 6 
= (1 - ‘I)”’ (1 - 6’/2) + y”’6. 

cos’4 = (1 - ‘I) + d2 + 2(1 - ‘I)”’6 

(1 - ‘I)(l + P)’ 

It then follows that in the limit ‘I -+ 1 that 

= 

and 

(1 + x2 P)’ I ’ (P’ + 2P)”’ [ 1 + (1  - q)i’2 
g(4) = + 

where 

6 
P =  

(1 - ‘I)”’‘ 

(Terms higher than 6’ have been consistently neglected.) Using these latter three 
results together with equation (14) we see that equation (17) reduces to 

dw n V 1 X 

dz 
_ -  - -- 

L V,t (1 + k)”’ ( I  + P)’ 
and equation 

- _  d4 - (1 - 
dz 

so that 

18) becomes 

dP n(1 + y )  V (1 - (P’ + 2P)”’ - 
‘I)”’ z = Lt  v, (1 + y )  (1 + k y 2  

Equations (23) and (24) then give 

X _ -  - dw 
dP (1 + P)’ (P2 + 2P)”’ 

The sharpness of the resulting profiles depends upon a scale length Lo defined by 

2L v, Lo = -- (1 + k)”’t 
n V  

since equation (24) becomes 

dP 2 _ -  - - [P’ + 2P]“’ 
dz Lo 

and so 

(1 + P)’ d p  [ I  + - dz - -  
L, 2[P’ + 2P]”2 
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Twisted nematics at any voltage 111 

The substitution ( 1  + P) = l/sin u and the boundary condition P = 0 at z = L/2 
readily reduces the integral to the standard form 

du 2(L/2 - z )  ni2 

= ju sinu ( I  + x2sin2u)l’z 
2s = 

LO 
(1 + x’sin2u)’’2 + cosu 

((1 + ~ ~ s i n ~ u ) ” ~  - cosu = +log 

After some algebraic manipulation it follows that 

1 + x2tanh22s 
(1 + P)’ = 

1 - tanh22s ’ 

Integrating equation (25) gives 

x2 I-’’’, (27) xdp (I + (1 + P)Z jop ( 1  + P)2 (P’ + 2PP2 
o m  

2 
o ( P )  - - = +_ 

where the f is chosen according as z 2 L/2. The substitution y = ( 1  + P)-2 
reduces the integral to the form 

dY I 

+_ 5 s, [(l - y)(l + x2y)]l’2 

which simplifies to a simple trigonometric integral giving 

where 

Using equation (26) and noting that 

1 - x2T2 
COS@ = cos(n/2 - Z) = s i n s  = 

1 + x’T’ 

(where T = tanh 2s) it follows that @/2 = tan-’ (x tanh 2s) since 

1 - tan2@/2 
1 + tan2@@’ 

cos@ = 

Consequently 

recalling that s = (L/2 - z)/L,. 
The expressions (26) and (28) are correct provided 6 is small enough for the small 

angle approximation to be valid and so hold in the centre of the cell. The sharpness 
of the variation in the twist profile is enhanced by both increasing the voltage and 
increasing the twist angle. The agreement between the analytic form (28) and the 
computer generated solution is illustrated in figure 3 for the voltage ratio, V / G  = 4. 
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112 T. W. Preist et al. 

I 
0 .oo 

lox  NORnALISED THICKNESS 

Figure 3. Comparison at V/Vo = 4 of the exact twist profile (solid line) with the analytic 
expression of equation (28) (dotted line). 

At the edges of the cell the tilt angle increases linearly with z with a gradient 

= *A/(1 + y)l /2  
dz edge 

Consequently near z = 0 

22 
$(z )  = 7 (1  + k)’/’ (1 + y)’” 

with an analogous expression valid near z = L. In the centre of the cell 

cos4 = (1  - ? p ( l  + P) 
= (1 - ~ 1 ) ’ ’ ~  (cosh22s + x2 sinh’ 2 ~ ) ” ~ ,  

where 

s = (L/2 - Z ) / L , .  

We have found no simple analytical form for 4 ( z )  in the critical turn-over region. 

5. Computation of full tilt and twist profiles 
Expressions (2) and ( 1 )  may be used with our knowledge of B and #m to evaluate 

+(z)  and o ( z )  for all voltages. However, as pointed out in the previous study [8] the 
variable 4,,, is better replaced by tan’ b,,, and the expressions suitably recast in the new 
variable to allow the small changes in 4,,, (x 90°) found for high voltages to influence 
the integrals and hence the distribution of 4 ( z )  and w(z) appropriately. Using this 
type of integral expression together with the high voltage analytic expressions for 
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Twisted nematics at any voltage 113 

8ol 

10xNORRALISED THICKNESS 

Figure 4. Comparison for V/V, = 2 and w, = 7c/2 of the profiles generated using the iterated 
values of and 6, (full curves) and the analytic expressions for these constants (dotted 
curves). 

the coefficient fl and tan2& allows the computation of twist and tilt profiles for 
all voltages. Figure 4 shows the twist and tilt profiles determined numerically at 
V / &  = 2 using expressions (1) and (2); the full curves use the parameters f l  and & 
obtained iteratively from equations (4) and (5) whereas the dotted curves use the 

1.00 

10 x NORRALISED THICKNESS 
Figure 5. Comparison for V/Vo = 1.5 and om = n/2 of the profiles generated using the 

iterated values of /3 and & (full curves) and the analytic expressions for these constants 
(dotted curves). 
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114 T. W. Preist et al. 

analytic expressions for p and 4,,, (obtained from those for x and q )  determined in this 
paper. The differences in the profiles even at this low voltage are less than 1 per cent 
and at V / &  = 4 the full and dotted curves are indistinguishable. Figure 5 shows a 
similar comparison carried out a V / &  = 1-5  where, as might be expected, the 
differences are becoming significant. 

Because the analytic solutions avoid the necessity of iteratively solving two 
equations requiring numerical integration the execution time in obtaining the dotted 
curve is considerably less than that required to generate the full curve. Consequently 
it is desirable to extend the analytic solution to as low a voltage as possible commen- 
surate with the desired degree of accuracy. An immediate significant improvement can 
be obtained by simply using the analytic solution at any voltage to determine the 
starting values of fl  and 4,,, for an iterative numerical solution. 

6. Summary 
The focal point for the genesis of the results presented here were difficulties in the 

numerical modelling of the optical properties of a liquid crystal cell using the integral 
formulation [5 ] .  The coupled integral expressions require iterative solutions for the 
unknown parameters 4,,, and p contained in their definition and it is not surprising 
that considerable computation time is necessary since each iteration involves two 
integrations and it  is necessary to carry out calculations at a sufficient number of 
points across the cell to calculate the director profiles. More particularly at high 
voltages the significant region of integration shrinks towards one of the end points 
producing computational difficulties unless special care is taken. Analysis of this 
aspect shows however that in this apparently difficult limit the integrals simplify 
considerably and may be evaluated analytically to an accuracy of 1 part in sec2&. 
Since $,,, is approaching n/2 this accuracy is typically better than 1 in 1000 for 
V/  V, > 4 and comparison with numerical solutions for V/  V, = 2 show that here the 
expressions are accurate to 1 per cent. The use of these analytic expressions at lower 
voltages can provide a very effective first approximation leading to an improvement 
of a factor of more than ten in the execution times for computer generated solutions, 
the simplification in the integrals also allows the director twist profile to be expressed 
in a concise analytic form which reproduces the computed curves with remarkable 
accuracy. 

Dr K. R. Welford would like to thank the University of Exeter Research Fund for 
the provision of a Postdoctoral Research Assistantship during which this work was 
undertaken. The authors would also like to thank Dr K. Harrison for supplying 
information on E7. 

Appendix 
The scale factor 4: is simply expressed in the form 
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Twisted nematics at any voltage 115 

Since its variation is considerable (in the present case from 1.0 to 3.55) as the volt- 
age, and hence the tilt profile +(z) ,  changes it is important to have a reasonable 
estimate of its value. A precise result can only be determined after 4 ( z )  is known 
but a suitable approximation to the profile can give a satisfactory estimate as we 
now outline. 

At z = 0 the initial slope is 

and as z increases the slope decreases monotonically to zero at z = L/2. The profile 
is approximated by 

(i) a straight line of slope +(d4/dz)o until 4 reaches 4, (at z = zo). 

(ii) a constant value of 4 = 4, for zo < z < L/2. 

This trapezoidal approximation underestimates in one part of the region of integra- 
tion and overestimates in the other. Hence 

where 

zo = 9 2(1 + y)”2 

so that 

where 

with 

For the nematic modelled here at V/Vo = 4, 5 = 1.35 and at V/V,  = 2, 4 = 1.90. 
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